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Scientific Significance Statement

Many foundational ecosystem characteristics in lakes are constrained by maximum depth. However, aquatic scientists have
struggled to both explain this variation and to predict maximum depths for lakes without detailed bathymetric surveys. The
morphometry of collections of lakes has previously been shown to follow theoretical predictions that assume Earth’s topogra-
phy approximates a fractal Browning motion. In this study, we apply these theories to the relationship between lake maxi-
mum depth and surface area, providing a solution to this problem of predicting lakes’ maximum depths. Maximum depth
increases with surface area, but massive lake-to-lake variation is an inherent characteristic of this pattern because the maxi-
mum depth is an extreme of a random topographic profile. The probability distribution of maximum depths used here can be
leveraged to upscale the patterns and processes for many lakes at the regional or global scale. We demonstrate this for the dif-
fusive flux of methane from temperate lakes to the atmosphere—a process that correlates strongly with maximum depth but
not surface area.

Abstract
Maximum depth is crucial for many lake processes and biota, but attempts to explain its variation have
achieved little predictive power. In this paper, we describe the probability distribution of maximum depths
based on recent developments in the theory of fractal Brownian motions. The theoretical distribution is
right-tailed and adequately captures variations in maximum depth in a dataset of 8164 lakes (maximum
depths 0.1–135 m) from the northeastern United States. Maximum depth increases with surface area, but
with substantial random variation—the 95% prediction interval spans more than an order of magnitude for
lakes with any specific surface area. Our results explain the observed variability in lake maximum depths,
capture the link between topographic characteristics and lake bathymetry, and provide a means to upscale
maximum depth-dependent processes, which we illustrate by upscaling the diffusive flux of methane from
northern lakes to the atmosphere.
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Maximum depth varies among lakes between � 0.1 and
1741 m (Herdendorf 1982; Sobek et al. 2011). This variation
engenders patterns of diverse ecosystem characteristics includ-
ing mixing and thermal stratification (Lewis 1983), the rela-
tive sizes of littoral and pelagic habitats (Seekell et al. 2021a,
b), and carbon cycling including methane evasion
(Li et al. 2020). However, there is a paucity of bathymetric
data relative to the global abundance of lakes, and empirical
relationships that relate maximum depth to lake and land-
scape characteristics consistently fail to develop sufficient pre-
dictive power to estimate maximum depth in lakes that have
not been depth sounded (Seekell 2018). In particular, there is
need to develop scaling relationships that relate maximum
depth to lake characteristics that are easily measured across
broad geographic regions, such as surface area (e.g., Cael
et al. 2017; Seekell et al. 2021a,b). Such relationships provide
the simple rules used to generalize understanding of aquatic
ecosystem patterns and processes at regional to global scales
(Downing 2009).

Bathymetric surveys are time consuming, and prohibitively
expensive for large numbers of lakes (Seekell 2018; Hollister
et al. 2011). While global perspectives have come to dominate
the aquatic sciences over the last 20 years, the proportion of
lakes depth sounded has remained low, preventing upscaling
of empirical results from local to global scales (Seekell 2018;
Oliver et al. 2016; Downing 2014). This has spurred a series of
empirical studies seeking to predifct lake-specific maximum
depth based on surface area and other easily mapped charac-
teristic, typically some metric of vertical relief within a buffer
zone around each lake (e.g., Minns et al. 2008; Hollister
et al. 2011; Sobek et al. 2011; Heatcote et al. 2015; Messsager
et al. 2016; Oliver et al. 2016). These studies assume that

larger lakes should be deeper than smaller lakes, and that inte-
grative measures of topography (i.e., variance, slope) should
relate to lake bathymetry. However, these might not be reli-
able assumptions. For example, while the deepest lakes all
have large surface areas (≥ 500 km2), many lakes with large
surface areas are remarkably shallow, often only a few meters
deep (Herdendorf 1982). Furthermore, correlations between
surface area and maximum depth are often weak. For exam-
ple, Minns et al. (2008) found a Pearson correlation between
the logarithms of surface area and maximum depth for Cana-
dian lakes of r = 0.46. Based on this correlation, the probabil-
ity of a larger lake being deeper than a smaller lake is only
slightly better (p = 0.65) than a fair coin flip (p = 0.5), if the
two lakes are selected at random (Dunlap 1994).

In addition, it is not clear that topography should predict
maximum depth. Maximum depth is essentially an extreme
along a combined random topographic–bathymetric profile
(Seekell 2018). While integrative measures of topography may
be able to predict integrative measures of bathymetry, there is
no clear reason to believe that they should accurately predict
the value of a random extreme (Seekell 2018). The conse-
quence of this is highly uncertain predictions that preclude
the application of these equations for upscaling. For example,
the error ratio (Carpenter et al. 1991) for maximum depth pre-
dictions for Canadian lakes is approximately 2 in Minns et al.
(2008). This means that a lake predicted to have a maximum
depth of 10 m will have a maximum depth between 5 and
20 m (Carpenter et al. 1991). Error ratios can be even higher,
such as in Heathcote et al. (2015). Appreciable prediction
errors occur across the entire size spectra of lakes (Carpenter
et al. 1991; Minns et al. 2008; Heatcote et al. 2015).

In this paper, we describe the theoretical basis for predicting
lake maximum depth from surface area. This theory is based
on the characteristics of fractional Brownian motions, which
approximate key features of Earth’s topography and are the
basis for other lake scaling relationships including mean depth
and volume (e.g., Goodchild 1988; Seekell et al. 2013; Cael
et al. 2017; Seekell et al. 2021a,b). Specifically, we describe how
recent developments generalizing the arcsine laws from
Brownian motions to fractional Brownian motions relate to the
problem of predicting maximum depths (Delorme and
Wiese 2015, 2016) by considering lakes as resting on a fractal
Brownian surface, as in Fig. 1. We test goodness-of-fit of the
theoretical distribution derived based on these theoretical
developments to a bathymetry database with more than 8000
lakes. Finally, we demonstrate how this distribution can be
applied to advance understanding of global lake characteristics
by upscaling diffusive methane flux from temperate lakes to
the atmosphere, a process that has previously been shown to
correlate with maximum depth but not surface area, and hence
a process that is difficult to upscale without maximum depth
data or an approach such as the one presented here
(Li et al. 2020). Collectively, these results both advance funda-
mental understanding of patterns of lake morphometry, and

Fig. 1. An example fractal Brownian motion path, with Hurst exponent
H = 0.4. This path is taken to be an analog of a transect along a land-
scape; lakes fill in sections along this transect, which thus sets their maxi-
mum depth. The lake surface transect L is proportional to the square-root
of the lake surface area

ffiffiffi
a

p
; the maximum depth z is the minimum of the

fractal Brownian motion path beneath this transect.
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provide tools for upscaling depth dependent processes when
seeking to place lakes within a global context.

Theory
Earth’s topography is approximately scale-invariant

(Turcotte and Huang 1995). This is self-evident for many land-
forms including lakes. For example, it would be difficult or
impossible to determine if a lake is 1 or 1000 ha on a map or
image without a scale reference (e.g., a scale bar on a map or a
house on an aerial image) because the key characteristics of
lake geometry are similar across wide ranges of scales (Seekell
et al. 2013; Seekell 2018; Seekell et al. 2021a,b). In particular,
Earth’s topography is self-affine, which implies different scal-
ing in the vertical and horizontal directions (Turcotte and
Huang 1995). This is also self-evident; when walking or driv-
ing away from a mountain range, the profile flattens more
rapidly than it compresses horizontally (Seekell 2018). Specifi-
cally, the Hurst exponent H captures the relationship between

horizontal and vertical scales. For a surface Z X
!� �

, rescaling by

any coefficient b conforms, in a statistical sense, to

b�HZ bX
!� �

¼Z X
!� �

. H takes values in the range (0, 1). When

H ¼ 1
2, transects across Z have the statistical properties of a

one-dimensional Brownian motion; when H > 1
2 ( < 1

2), surfaces
are smoother (rougher) than Brownian trajectories (e.g.,
Goodchild 1988). These characteristics engender the derivation of
empirically robust and theoretically sound power-law relation-
ships between lake surface area and various aspects of lake
morphometry including abundance, volume,mean depth, perim-
eter, and hydrological connectivity (Seekell et al. 2013; Cael
et al. 2017; Seekell et al. 2021a,b). However, to our knowledge, the
relationship between maximum depth and surface area has not
been described from a fractal perspective (Seekell 2018).

When topography approximates a Brownian motion
(H ¼ 1

2), the maximum depth over a given interval is described
by the third arcsine law (Delorme and Wiese 2015). Essen-
tially, because the maximum depth is a single random dis-
placement, that is, an extreme on a random topographic
profile, the arcsine law shows that maximum depth converges
as a probability distribution based on surface area. Recently,
this result has been generalized to cases where H≠ 1

2 (Delorme
and Wiese 2015, 2016). This generalization allows application
of the arcsine law to predict the distribution of lake maximum
depth p(z) based on surface area and the Hurst coefficient.
Unfortunately, the mathematical form of p(z) is complex.
First, define the normalized maximum depth

y¼ zffiffiffi
2

p
LH , ð1Þ

and define the probability distribution in terms of y, that is, p
(y) (later we recast this in terms of z as well). Doing so,

p zð Þ¼ 1ffiffiffi
2

p
LH f yð Þ, ð2Þ

where 1ffiffi
2

p
LH is a normalization constant that ensures the total

probability integrates to one, and f(y) has the form:

f yð Þ¼
ffiffiffi
2
π

r
e�y=2 y 1=Hð Þ�2 e H�1

2ð Þ 4lnyþG yð Þð Þ, ð3Þ

and G yð Þ is the complex expression:

G yð Þ¼ y4

6 2
F2 1,1;

5
2
,3;

y2

2

� �
�3y2þπ 1�y2

� �
erfi

yffiffiffi
2

p
� �

þ
ffiffiffiffiffiffi
2π

p
ey

2=2yþ y2�2
� �

γEþ ln 2y2
� �� �

, ð4Þ

where F is the hypergeometric function, erfi is the imaginary
error function, and γE is the Euler–Mascheroni constant
(Delorme and Wiese 2015, 2016).

To date, the arcsine laws for fractal Brownian motions are
only proven for the one-dimensional case. Therefore, lake
areas must be recast as one-dimensional lengthscales L to
empirically test the theoretical depth distribution. The length-
scale L is in a sense the length of a randomly chosen horizon-
tal transect along a lake’s bathymetry, which includes the
lake’s maximum depth (solid black line in Fig. 1). As surface
area a (m2) is the fundamental horizontal metric for lakes, it
would be preferable to cast L in terms of a; from unit consider-
ations one necessarily must have L/ ffiffiffi

a
p

. However, the coeffi-
cient relating the two is not easily derived from first principles
because lake surfaces often have complex shapes, and their
bathymetry can also be complex, including multiple basins
and/or having maximum depths far from their centers. We,
therefore, introduce the free parameter ℓ that allows us to relate
L to a according to L¼ℓ

ffiffiffi
a

p
. ℓ should be no larger than what it

would be for a circular lake with its maximum depth at the

center, that is, ℓ¼ ffiffiffiffiffiffiffiffi
2=π

p
≈0:8, but is likely much smaller as

lakes take myriad shapes that are often very far from circular,
and their maximum depths do not have to be in their center
(Stachelek et al. 2022). To compare the theoretical distribution
to observed depths, it is further useful to use a normalized maxi-

mum depth y¼ z=
ffiffiffi
2

p
LH and define the probability distribution

in terms of y, that is, p(y) (that can later be recast in terms of
z). Thus in terms of maximum depth and area, normalized

maximum depth is: y¼ z=
ffiffiffi
2

p
ℓ

ffiffiffi
a

pð ÞH . This allows an overall
test of goodness-of-fit that is needed because of difficulty find-
ing large numbers of lakes with identical surface areas.

Empirical test
We tested goodness-of-fit of normalized maximum depths to

the theoretical distribution using the publicly available LAGOS
database, which includes maximum depths for N = 8164 lakes
in the northeastern United States (Oliver et al. 2015, 2016)
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(accessed 28 August 2021). We selected this database because it
has been extensively documented and has previously been uti-
lized for developing and testing predictive models for lake maxi-
mum depth (Oliver et al. 2016). Maximum depth spans more
than three orders of magnitude among these lakes, from
z = 0.1 m to z = 135 m while surface area spans from a = 4 ha
to a = 989 ha. This database does not distinguish between lakes
and reservoirs.

We compare the theoretical and empirical depth distributions
using the Kolmogorov–Smirnov statistic D¼ max P yð Þ�E yð Þð Þ,
where P(E) is the theoretical (empirical) cumulative distribu-
tion function for y (Stephens 1974). For a given value of
H and ℓ, we calculate y for each lake, then E(y) from the
empirical distribution of y values, then p(y) based on that
H value, then P(y) by integrating p(y), then finally D by com-
paring E(y) and P(y). First, we set H = 0.4 as an estimated value
for Earth’s topography (Mark and Aronson 1984; Dodds and
Rothman 2000), which has also been shown to capture global
scale relationships between mean depth and surface area (Cael
et al. 2017). We then select ℓ by systematically varying ℓ and
repeating this procedure until D is minimized. We also test
the best-fit value of H by systematically varying both H and ℓ

until D is minimized. Finally, because small lakes are often
underrepresented in lake databases (Downing 2009; Stanley
et al. 2019) and are prone larger relative errors simply by
being shallower on average, we repeat this process but only
considering the upper half of the distribution, that is, using a
modified Dalt ¼ max P y >median yð Þð Þ�E y >median yð Þð Þð Þ
(Seekell 2018). This tests the goodness-of-fit of the larger well
mapped lakes to the upper half of the theoretical distribution.

Results
Figure 2 shows that the theoretical distribution p(z) ade-

quately captures the empirical distribution of maximum
depth when H = 0.4 (D = 0.033). The distribution is right-
skewed and unimodal, with few lakes having a y ≈ 0, many
lakes having a y ≈ 0.5, and a heavy tail of relatively deep lakes
having a y � (1, 4). The best-fitting ℓ value was 0.17, substan-

tially lower than the theoretical limit of
ffiffiffiffiffiffiffiffi
2=π

p
; this presum-

ably reflects the extent to which these lakes are not circular
and their maximum depths are not located in their centers.
Furthermore, when H is left as a free parameter rather than
externally set by topographic considerations, the best-fitting
H = 0.38 is negligibly different to H = 0.4 (Fig. A1; D = 0.027;
ℓ also changes only slightly, from 0.17 to 0.18).

This distribution p(y) can be recast as a distribution for
maximum depth z for lakes of a given area a as shown in
Fig. 3; for a lake with a = 1 ha this corresponds to a median
maximum depth of 3.9 m and a 95% confidence interval of
(0.4 m, 10.5 m). This wide range of predicted depths arises
naturally from random topographic variations, and is consis-
tent with the ranges of variability observed in empirical
datasets (Fig. 3). In this context of a particular a value, the dif-
ference between the theoretical and empirical distributions
can be most easily understood by comparing the percentiles
of each, which underscores that the correspondence is indeed
quite good. If we treat the empirical and theoretical
y distributions as if they were maximum depth distributions
for lakes with a = 1 km2, the 1st–91st percentiles of the theo-
retical and empirical distributions for maximum depth agree
within 0.20 m. Differences of the 92nd–99th percentiles are
larger at 0.25–1.40 m, but these lakes have deeper maximum

Fig. 2. Theoretical probability distribution vs. histogram of normalized
maximum depth (y) values for 8164 lakes. The Hurst exponent is fixed at
H = 0.4 and the area-lengthscale coefficient ℓ (= 0.17) is left as a free
parameter. D = 0.033 is the Kolmogorov–Smirnov statistic.

Fig. 3. Lake surface areas a and maximum depths z, with percentiles
of the probability distribution for z (from Fig. 2, for a given a)
superimposed.
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depths, so these differences correspond to small relative devia-
tions (5–17%).

Discussion
Scaling relationships provide simple rules for understanding

hydrographic patterns at regional and global scales. Our study
contributes to this understanding by describing the relation-
ship between surface area and maximum depth. Prior work has
primarily focused on developing empirical relationships with
multiple linear regression or similar methods (e.g., Sobek
et al. 2011; Heatcote et al. 2015; Oliver et al. 2016), whereas
our study provides a rigorous theoretical perspective which is
very general, as it is based on fractal topographic theory, while
also accurately characterizing the data we use to test it. Lake
area and the Hurst coefficient are the key factors controlling
lake depth, with a large stochastic component. These factors
can be measured without bathymetric surveys, and hence
our results can be applied to existing hydrographic and topo-
graphic data sets to estimate characteristics of lake across
broad geographic extents including littoral habitat size, car-
bon burial, or greenhouse gas evasion (Li et al. 2020; Seekell
et al. 2021a,b).

Theoretical lake morphometry, including our study, pri-
marily derives from the assumption that Earth’s topography
approximates a fractal Brownian surface (Goodchild 1988;
Seekell et al. 2013; Cael et al. 2017). This assumption is imper-
fect because (1) it implies that the landscape is a static surface
whereas real landscapes are dynamic and evolve over time,
(2) it implies scale-invariance whereas real landscapes are
shaped by scale dependent processes, and (3) it implies that
lakes are formed by flooding pre-existing landscape depres-
sions, which is often not the case (Goodchild 1988;
Timms 1992). Within this context, linear regression analyses
based on landscape characteristics are trying to leverage the
differences between real and random surfaces to improve
maximum depth predictions. However, the low explanatory
power of such analyses, and the general consistency between
theoretical predictions and empirical patterns, indicates that
the imperfect assumptions of the fractal Brownian motion do
not materially detract from their application to lake mor-
phometry. Hence, fractional Brownian motion is an effective
starting point for developing predictions about the global
characteristics of lakes.

The overall fit is remarkably good in our analysis. However,
discrepancies do arise between the data and theory, for several
potential reasons. The number of medium-depth lakes is
slightly overestimated and the number of small lakes slightly
underestimated by the theoretical distribution. Whether H is
set by external topographic considerations (H = 0.4) or esti-
mated from the lake y distribution (H = 0.38), there are some
discrepancies between the theoretical depth distribution and
observations. Specifically, at the lower end of the distribution,
with the theory slightly overestimating the number of

medium-depth lakes (y � [1, 2]), underestimating the number
of shallow lakes (y � 1

4 ,1
� �

), and overestimating the number of

very shallow lakes (y < 1
4). The general ontongeny of lakes is

decreased depth over time due to sedimentation (Seekell
et al. 2021a,b). Empirical deviations from the theoretical
depth distribution are consistent with this ontogeny, specifi-
cally very shallow lakes are rarer than expected, probably
because they have transitioned from lake to wetland or terres-
trial ecosystem. In addition, the accentuated peak for shallow
lakes is consistent with patterns expected due sedimentation.

There are several other factors that can contribute to dis-
crepancies between theory and empirical patterns, primarily
related to the collection of bathymetric data. First, large lake
databases typically contain samples biased to certain lake
characteristics, and the values in the data we analyzed may
not be completely representative of the true maximum depth
distribution (Seekell 2018; Seekell et al. 2021a,b). Second,
maximum depths are often only reported to one decimal
place, which can lead to significant rounding errors for shal-
low lakes. This is clearly visible in Fig. 3, where there is a regu-
lar patterning of shallow maximum depths, but not deep
maximum depths (i.e., equal spacing among points along the
ordinate). Finally, very shallow lakes may be misclassified as
wetlands and therefore not included in bathymetric databases.
Collectively, these factors most strongly impact small and
shallow lakes. This observation is consistent with the excel-
lent fit between theoretical and empirical distributions for
deep lakes and somewhat weaker fit across the whole depth
distribution, which can be interpreted as caused by larger rela-
tive errors in the shallower lakes’ maximum depths. Specifi-
cally, when we fit only the upper-half of the y distribution
(i.e., using Dalt above; Fig. A2); the goodness-of-fit was excel-
lent (Dalt = 0.012). Advancing global limnology relies on
developing robust probability distributions for lake character-
istics (Downing 2009). The variety of factors causing discrep-
ancies between the theoretical and observed distributions
highlight the challenges faced in characterizing these distribu-
tions, even in ideal cases like this where theory provides clear
guidance on the appropriate distribution.

To demonstrate the utility of our approach, we apply it to
the example of estimating evasion of diffuse methane flux from
temperate lakes to the atmosphere. Note that our approach
is useful for predicting characteristics of collections of lakes,
but not individual lakes. The only accurate way to measure
morphometry for individual lakes remains the detailed
bathymetric survey. However, many urgent questions in the
aquatic sciences are framed in a global perspective where the
characteristics of large populations are of specific interest
(Downing 2009, 2014); our approach is well-suited to these
questions. The characteristics of small numbers of lakes are typ-
ically upscaled based on abundance-area distributions to esti-
mate population level characteristics (Downing 2009; Seekell
et al. 2018). This poses a problem for ecosystem characteristics
that are closely tied to maximum depth but not surface area.
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Diffusive methane flux from temperate lakes to the atmosphere
is one example of these characteristics (Li et al. 2020). Methane
is a potent greenhouse gas and estimating evasion from lakes to
the atmosphere is a priority for understanding contributions of
lakes to the global carbon cycle. A recent synthesis of diffusive
flux measurements for temperate lakes revealed a statistically sig-
nificant inverse relationship with maximum depth (p < 0.001),
but no significant relationship with surface area (p > 0.05)
(Li et al. 2020). We applied the empirical relationship for diffu-
sive methane flux from (Li et al. 2020) to the full database of
lakes from 17 northeastern United States for which surface areas
are available (N = 141, 265) by randomly simulating maximum
depths for these according to the distribution above (with
H = 0.4, and ℓ = 0.17 estimated from the 8164 lakes from these
same 17 states for which maximum depth measurements were
available; Fig. 2) and then calculating diffusive methane flux for
each lake as a function of surface area and simulated maximum
depth. We repeated this process many times to estimate
uncertainty due to the randomness associated with simulating
maximum depths via a probability distribution.

Using this approach to estimate methane diffusion, we find
an estimated flux of 0.5 � 0.04 Tg CH4 yr�1 from these lakes.
This is a substantially different estimate than if one takes a
simple average rate per unit area across all lakes because the
relationship between methane flux and maximum depth is
nonlinear (Li et al. 2020) and this average will be dominated
by lakes with large surfaces, deep maximum depths, and low
rates of methane flux per unit area. One may substantially
underestimate overall methane flux as a result; our results
thus represent an important methodological advancement for
upscaling lake characteristics correlated with depth but not
surface areas. For instance, multiplying the average of 0.9 g
CH4 m�2 yr�1 from (Li et al. 2020) by the total surface area of
the 141,265 lakes above results in an estimate of 0.03 Tg
CH4 yr�1.

Our study highlights the far reaching influence of the Hurst
coefficient on global scale lake characteristics. Specifically, the
differences between horizontal and vertical scaling described
by the Hurst coefficient underlie differences in characteristics
between large and small lakes—small lakes are typically deeper
relative to their surface area compared to large lakes which
has implications for energy and carbon budgets across the
lake size spectra. In addition, the Hurst coefficient is
involved in most other lake scaling relationships, including
for abundance, perimeter, volume, and hydrologic connectiv-
ity (Goodchild 1988; Seekell et al. 2013; Cael et al. 2017;
Seekell et al. 2021a,b). Despite this, empirical measurements
of the Hurst coefficient for Earth’s topography and bathymetry
are relatively rare and highly variable (H = 0.4–0.7)
(Goodchild 1988; Weissel et al. 1994; Gagnon et al. 2006).
Developing such measurements should be an important prior-
ity for advancing global scale understanding of lakes. These
measurements could explain variations in scaling relationships
among regions with different lake basin forming processes, as

well as improve the precision of predictions by reducing uncer-
tainty in parameterization.
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